Error processing in normal aging and in basal ganglia disorders.
نویسندگان
چکیده
Recently it has been shown that effects of aging and pathologically induced changes of basal ganglia structures may have quite similar effects on cognitive functions mediated by the medial prefrontal cortex. The question appears, if this pattern may be assignable to other cognitive functions that are mediated via the basal ganglia and medial prefrontal brain areas. Error processing is a component of executive functions that also depends on these areas and especially on the anterior cingulate cortex (ACC). Hence we ask, if error processing functions are differentially modulated by normal aging and basal ganglia diseases. Error processing mechanisms in these groups were investigated using a cognitive event-related potential (ERP), the error negativity. Enrolling an extended sample of young and elderly controls, as well as patients with Parkinson's and Huntington's disease, we show that modulations of error processing differ between aging, different basal ganglia diseases. Despite that the examined basal ganglia disorder groups (Parkinson's and Huntington's disease) differ in their age they show similar modulations in error processing, suggesting that aging effects are overridden by pathogenic effects. The study shows that it may be valuable to compare aging not only to different forms of basal ganglia disorders in order to gain knowledge about age- and disease-related mechanisms and the effects of these on cognitive functions. Diseases of the basal ganglia may impact error processing above and beyond the effects of normal aging. Although many aging, Parkinson's disease and Huntington's disease studies on error processing functions have already been published, this study ties together several related observations across all of these groups in one experiment.
منابع مشابه
Different Profiles of Verbal and Nonverbal Auditory Impairment in Cortical and Subcortical Lesions
A B S T R A C T Introduction:We investigated differential role of cortical and subcortical regions in verbal and non-verbal sound processing in ten patients who were native speakers of Persian with unilateral cortical and/or unilateral and bilateral subcortical lesions and 40 normal speakers as control subjects. Methods: The verbal tasks included monosyllabic, disyllabic dichotic and diotic tas...
متن کاملA Grey Box Neural Network Model of Basal Ganglia for Gait Signal of Patients with Huntington Disease
Introduction: Huntington disease (HD) is a progressive neurodegenerative disease which affects movement control system of the brain. HD symptoms lead to patient’s gait change and influence stride time intervals. In this study, we present a grey box mathematical model to simulate HDdisorders. This model contains main physiological findings about BG. Methods: We used artificial n...
متن کاملP103: The Association between Antibasal Ganglia Antibodies of Streptococcal Infection and Neurological Conditions
The outbreak of the post-streptococcal neurological disorders related to the antibasal ganglia antibodies is broadening. In addition to the disorders such as chorea and obsessive-compulsive disorder which have been recognized previously, the movement and behavioral abnormalities are the other aspects of post-streptococcal neurological disorders. Streptococcus is a positive-gram and coccus...
متن کاملNeuroeconomic Measures of Social Decision-Making Across the Lifespan
Social and decision-making deficits are often the first symptoms of a striking number of neurodegenerative disorders associated with aging. These includes not only disorders that directly impact dopamine and basal ganglia, such as Parkinson's disorder, but also degeneration in which multiple neural pathways are affected over the course of normal aging. The impact of such deficits can be dramati...
متن کاملA Gray-Box Neural Network Model of Parkinson’s Disease Using Gait Signal
In this study, we focused on the gait of Parkinson’s disease (PD) and presented a gray box model for it. We tried to present a model for basal ganglia structure in order to generate stride time interval signal in model output for healthy and PD states. Because of feedback role of dopamine neurotransmitter in basal ganglia, this part is modelled by “Elman Network”, which is a neural network stru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 159 1 شماره
صفحات -
تاریخ انتشار 2009